
Федеральная служба по гидрометеорологии и мониторингу окружающей среды

ФГБУ «Институт глобального климата и экологии имени академика Ю.А. Израэля»

Бюллетень мониторинга изменений климата Земного шара

Приземная температура

Осень 2023

Москва 2024

ОГЛАВЛЕНИЕ^{1,2}

1.	ВВЕДЕНИЕ	3
2.	ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА ОСЕНЬЮ 2023 года. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ	6
3.	КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ, 1850-2023 гг. (осенний сезон)	12
4.	ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2023 гг. (осенний сезон)	16
5.	ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА, 1976-2023 гг. (осенний сезон)	20
6.	ЗАКЛЮЧЕНИЕ	24

_

¹ Бюллетень подготовлен в Отделе мониторинга и вероятностного прогноза климата ФГБУ «ИГКЭ». Данные текущих наблюдений (сводки КЛИМАТ и СИНОП из оперативного потока) подготовлены в ФГБУ «ВНИИГМИ-МЦД» и ФГБУ «Гидрометцентр РФ». Все Бюллетени мониторинга климата, сезонные и годовые, выпускаемые в ОМВПК ФГБУ «ИГКЭ», размещаются на сайте http://www.igce.ru/climatechange /.

В выпуске принимали участие сотрудники Отдела мониторинга и вероятностного прогноза климата ФГБУ «ИГКЭ»: М.Ю. Бардин (руководитель), Э.Я. Ранькова, О.Ф. Самохина, У.И. Антипина, В.Д. Смирнов, Т.В. Платова

² На обложке приведено поле средних сезонных аномалий температуры приземного воздуха над сушей Земного шара: осень 2023 года. Использованы станционные данные ИГКЭ.

1. ВВЕДЕНИЕ

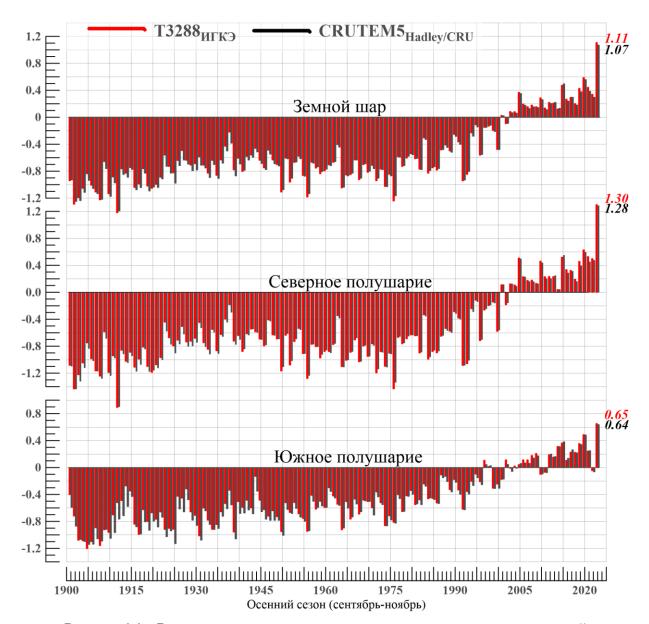
В настоящем бюллетене представлены данные о климатических аномалиях осеннего сезона 2023 года и обновленные (с учетом этих данных) оценки тенденций в изменении температурного режима осенних сезонов на территории земного шара в течение 1976—2023 гг. Оценки приведены для сезона в целом и каждого из осенних месяцев (сентябрь-октябрьноябрь) для аномалий относительно базового периода 1991-2020 гг.

Бюллетень подготовлен в рамках оперативного мониторинга климата в ФГБУ «ИГКЭ (система GCCM – Global Climate Monitoring»³), с использованием данных метеорологических наблюдений о среднемесячной температуре приземного воздуха на 3288 наземных станциях земного шара (массив Т3288, данные ИГКЭ; массив сформирован и ежемесячно пополняется средствами технологии GCCM на основе телеграмм КЛИМАТ, СИНОП).

Параллельно в бюллетене приводятся оценки по данным о приповерхностной температуре на сети 5-градусных боксов, охватывающей всю территорию земного шара, включая континенты и океаны (массивы HadCRUT5, CRUTEM5, HadSST4 — данные Великобритании⁴; в бюллетене упоминаются как «данные Hadley/CRU» и используются в точном соответствии с оригиналом, без какой-либо корректировки).

Развернутый комментарий к материалам бюллетеня с описанием используемых источников, сети станций и элементов методики GCCM размещен на сайте ИГКЭ⁵. Здесь отметим лишь, что массив T3288 служит базовым массивом для оценки состояния температурных условий на суше земного шара, а массив HadCRUT5 и глобальные временные ряды HadCRUT5, HadSST4, CRUTEM5 используются для создания полной картины над сушей и океанами.

Массив CRUTEM5 (только суша, Hadley/CRU), полученный по той же системе наблюдений, что и T3288 (только суша, ИГКЭ), но другим коллективом, с применением других методик и технологий сбора данных, их обработки и анализа, дополнительно используется как эталонный для суждения о репрезентативности и мере неопределенности представленных в бюллетене результирующих оценок и выводов для суши Земного шара.


В частности, по данным осеннего сезона, близость глобальных рядов Т3288 и CRUTEM5, по крайней мере с середины прошлого столетия, видна уже визуально (рис. 1.1) и подтверждается статистиками их попарных разностей (табл.1.1): среднее различие рядов составляет 0.01-0.05°C, стандартное отклонение различий (0.03-0.06°C) на порядок ниже стандартного отклонения самих рядов (0.3-0.6°C), а различие рядов в отдельные годы после 1976 г. никогда не поднималось выше 0.10°C (в 1976 году в северном полушарии). При этом

 $^{^3}$ Решение Центральной методической комиссии по гидрометеорологическим и гелиогеофизическим прогнозам от 20 декабря 2016 г. – http://method.meteorf.ru

⁴ Массивы CRUTEM5 (температура воздуха над сушей), HadSST4 (температура воды на поверхности океанов и морей) и HadCRUT5 (объединенные данные над континентами и океанами) созданы и поддерживаются совместно двумя коллективами Великобритании – Хэдли-центром (Met Office Hadley Centre) и Университетом Восточной Англии (CRU UEA). Данные ежемесячно обновляются и публикуются производителем на web-сайтах http://www.MetOffice.gov.uk и http://www.MetOffice.gov.uk и http://www.MetOffice.gov.uk и http://www.MetOffice.gov.uk и http://www.detOffice.gov.uk и http://www.cru.uea.ac.uk в форме глобальных сеточных полей (в центрах 5-градусных боксов) и http://www.detoffice.gov.uk и http://www.detoffice.gov.uk и http://www.detoffice.gov.uk и http://www.det

⁵ О бюллетене GCCM (read me). URL: http://www.igce.ru/climatechange /.

во всех случаях ряды характеризуются исключительно высокой корреляцией (не менее 0.995) и предельно низким различием трендов (до 0.012°C/10 лет).

Рисунок 1.1 — Временные ряды пространственно осредненных сезонных аномалий температуры приземного воздуха над сушей Земного шара, Северного и Южного полушарий $(1901-2023\ {
m rr.},{
m ocenь},{
m ^{\circ}C}).$

Использованы глобальные временные ряды T3288 (рассчитаны по данным и методике $U\Gamma K$ Э) и оригинальные временные ряды CRUTEM5 (данные Hadley/CRU, http://www.MetOffice.gov.uk).

Аналогичные оценки с практически с тем же заключением представлены в каждом бюллетене для соответствующего сезона/года (http://www.igce.ru/performance/publishing/).

Дополнительно можно отметить, что с начала 2000-х (в Южном полушарии 2010-х) в ходе сезонных (осень) глобальных температур над сушей (рис. 1.1) четко выделяются 5-летние периоды, каждый из которых завершается резким повышением температуры, за которым следует откат на более низкий уровень (см. 2005, 2010, 2015, 2020 годы).

`

Таблица 1.1 – Оценки близости/различия глобальных временных рядов Т3288 (ИГКЭ) и CRUTEM5 (Hadley/CRU) в среднем за осенний сезон для территории суши Земного шара (ЗШ), Северного (СП) и Южного (ЮП) полушарий

Owarra	1	1976-202	3	1923-2023			
Оценка	ЗШ	СП	ЮП	3Ш	СП	ЮП	
Корреляция рядов	0,999	0,999	0,996	0,995	0,997	0,989	
Среднее различие, °С	0,009	0,005	0,022	0,022	0,013	0,051	
СКО (сигма) различий, °С	0,026	0,029	0,030	0,045	0,040	0,059	
Среднее абсолютное различие, °С	0,023	0,023	0,030	0,037	0,031	0,057	
Макс. абсолютное различие, °С	0,076	0,095	0,078	0,167	0,138	0,218	
Разность коэфф. тренда, °С /10лет	0,010	0,011	-0,008	-0,006	-0,004	-0,012	
СКО Т3288, °С	0,480	0,563	0,318	0,455	0,512	0,371	
CKO CRUTEM5, °C	0,463	0,546	0,323	0,450	0,502	0,390	

2 .ТЕМПЕРАТУРНЫЙ РЕЖИМ У ПОВЕРХНОСТИ ЗЕМНОГО ШАРА ОСЕНЬЮ 2023 ГОДА. ЭКСТРЕМАЛЬНЫЕ АНОМАЛИИ

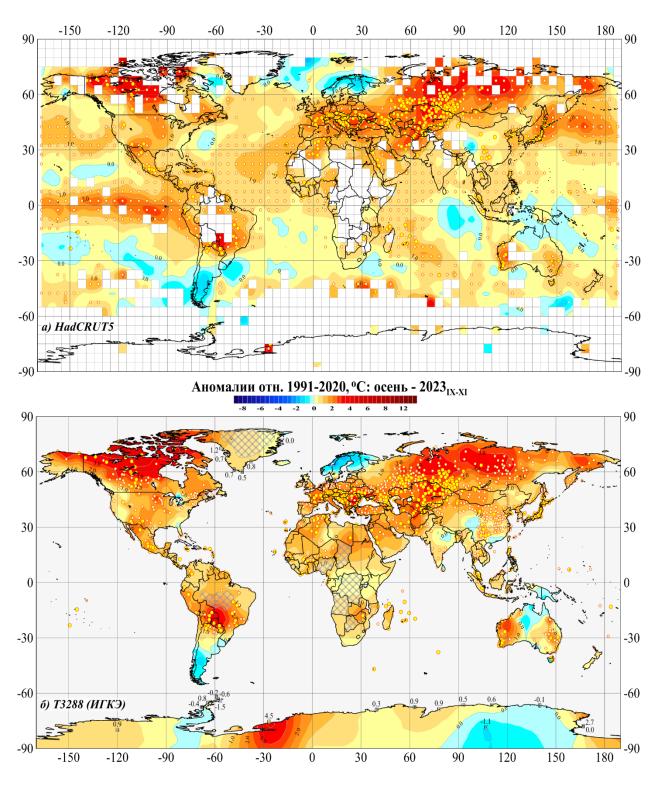
Осень 2023 г.- самый теплый осенний сезон в истории наблюдений по всем наборам данных. Предыдущие сезонные рекорды осенней температуры осуществились: на суше Земного шара в целом и в каждом из полушарий – в 2020 г., а на акваториях океанов и суммарно (суша+море) – в 2015 г. (табл. 2.1).

Таблица 2.1 – Пять самых теплых осенних сезонов по данным разных источников для Земного шара, Северного и Южного полушарий: средняя за осенний сезон аномалия температуры (VT) и год наблюдения

	3	Ш	C	П	Ю	ЭΠ
Ранг	VT, °C	Год (осень)	VT,°C	Год (осень)	VT,°C	Год (осень)
		HadCRUT5	(Hadley/CR	U, суша+мо	pe)	: /
1	0,714	2023	0,981	2023	0,448	2023
2	0,395	2015	0,510	2015	0,279	2015
3	0,306	2019	0,455	2020	0,206	2019
4	0,281	2021	0,406	2019	0,199	1997
5	0,270	2020	0,398	2021	0,197	2018
		T3	288 (ИГКЭ,	суша)		
1	1,107	2023	1,299	2023	0,651	2023
2	0,587	2020	0,629	2020	0,488	2020
3	0,473	2015	0,529	2021	0,364	2015
4	0,444	2021	0,520	2015	0,356	2019
5	0,427	2019	0,507	2005	0,313	2014
		CRUTE	M5 (Hadley/	CRU, суша)		
1	1,069	2023	1,285	2023	0,635	2023
2	0,557	2020	0,595	2020	0,482	2020
3	0,494	2015	0,550	2015	0,381	2015
4	0,384	2021	0,497	2005	0,340	2019
5	0,376	2019	0,475	2022	0,309	2014
		HadSS'	T4 (Hadley/C	CRU, море)		
1	0,590	2023	0,772	2023	0,404	2023
2	0,370	2015	0,491	2015	0,259	2015
3	0,306	2019	0,436	2019	0,209	1997
4	0,259	2021	0,394	2020	0,199	2018
5	0,251	2018	0,365	2021	0,184	2019

Из крупных региональных аномалий, по-видимому, следует указать многочисленные, отмеченные в таблице 2.2 сезонные/месячные температурные рекорды масштаба континентов, океанов и широтных поясов, а именно: северная часть Атлантики 15-70N, широтные пояса 25-65N, 25S-25N, Южная Америка — сезон в целом и все месяцы сезона; северная часть Тихого океана 20-65N, Африка — сезон в целом и ноябрь; широтный пояс 65-25S, Северная Америка, Европа — сезон в целом и сентябрь; Антарктида — сентябрь.

Кроме того, следует отметить отрицательные аномалии в среднем по широтному поясу 90-65S и в Антарктиде в октябре-ноябре.


Таблица 2.2 – Пространственно-осредненные значения аномалии приземной температуры в крупных регионах Земного шара и их вероятности непревышения (осень 2023 г., в среднем за сезон и в каждом из месяцев)

	Регион	Oce	ень	Сент	ябрь	Окт	ябрь	Ноя	брь
	1 ст ион	vT, °C	F%	vT, °C	F%	vT, °C	F%	vT, °C	F%
]	HadCRI	UT5 (cyn	па+мор	e)			
Земн	юй шар	0,71	100	0,73	100	0,68	100	0,73	100
Севе	рное полушарие	0,98	100	0,96	100	0,97	100	1,02	100
Южі	ное полушарие	0,45	100	0,51	100	0,39	100	0,45	100
Атла	нтика, 15-70N	0,77	100	0,93	100	0,76	100	0,64	100
Тихи	ий океан, 20-65N	0,86	100	0,87	99,1	0,83	99,1	0,87	100
o	65-90N	1,23	98,2	0,84	96,4	0,93	92,9	2,00	99.1
Широтные пояса	25-65N	1,19	100	1,19	100	1,22	100	1,17	100
иротні пояса	25S-25N	0,64	100	0,64	100	0,59	100	0,70	100
ПП	65-25S	0,34	100	0,42	100	0,28	99,1	0,32	99.1
	90-65S	0,65	87,3	2,59	97,5	-0,20	57	-0,54	39.2
			T3288	(только	суша)				
Земн	юй шар	1,11	100	1,11	100	1,08	100	1,12	100
Севе	рное полушарие	1,30	100	1,23	100	1,30	100	1,37	100
Южі	ное полушарие	0,65	100	0,82	100	0,55	100	0,55	98,2
Севе	рная Америка	1,55	100	1,72	100	1,27	96,4	1,67	99,1
Евра	RNE	1,54	100	1,30	100	1,63	100	1,70	99,1
Южі	ная Америка	1,04	100	1,16	100	0,90	100	1,03	100
Афр	ика	0,93	100	0,75	99,1	0,98	99,1	1,00	100
Авст	ралия	0,57	95,5	1,11	98,2	0,10	79,5	0,54	87,5
Анта	арктида	0,66	93,7	3,39	100	-1,03	25,3	-0,63	39,2
Евро	опа	1,58	100	2,73	100	1,07	94,6	0,96	82,1
Азия	Азия		100	0,94	99,1	1,78	100	1,84	100
		(CRUTE	М5 (толі	ько суш	a)			
Земн	юй шар	1,07	100	1,05	100	1,07	100	1,09	100
Севе	рное полушарие	1,29	100	1,19	100	1,32	100	1,35	100
Южі	ное полушарие	0,64	100	0,76	100	0,56	100	0,58	100

Условные обозначения:

- 1. vT наблюденная аномалия осенью 2023 года, °С (базовый период 1991-2020 гг.)
- 2. F% –значение эмпирической функции распределения F=prob (X≤ vT₂₀₂₃) по данным за 1911-2023 гг. (вероятность непревышения)
- 3. Синим шрифтом выделены отрицательные аномалии
- 4. Красным жирным шрифтом выделены абсолютные максимумы (F=100%)

Более полное представление о региональных особенностях сложившихся этой осенью температурных условий и о локализации наиболее крупных аномалий дает географическое распределение локальных аномалий (рис. 2.1) и их частотное распределение по знаку и интенсивности, глобально и в каждом из регионов (табл. 2.3).

Рисунок 2.1 – Пространственное распределение аномалий приземной температуры на территории Земного шара осенью 2023 г.: а) по сеточным данным HadCRUT5 (Hadley/CRU, UK); б) по станционным данным T3288 (ИГКЭ)

Аномалии приведены в отклонениях от средних за 1991-2020 гг. Кружками белого (минимумы) и желтого (максимумы) цвета указано положение боксов/станций с рекордными значениями аномалий. Значками меньшего размера указано положение 5%-х экстремумов того же знака. В точках расположения станций Антарктиды и Гренландии показаны числовые значения наблюдаемых аномалий. Пустыми боксами (а) и штриховкой (б) показаны области отсутствия наблюдений.

Таблица 2.3 — Распределение локальных сезонных аномалий в крупных регионах мира по их знаку и интенсивности (осень 2023)

		NN -	Часто	та знач	ений в	каждой	категор	ии (% о	ot NN)
	Регион	число	I	Аномалиі	4	5%- экст	ремумы	Абсол	ютные
	1 CI NOH	боксов/	(отн	н. 1991-20	020)	холода	/тепла	экстре	емумы
		станций	V <0	V=0	V>0	$X <= P_{05}$	$X>=P_{95}$	X=min	X=max
		HadCR	UT5 (Ha	adley/CF	RU, суш	а+море)			
Земн	ной шар	1653	12,8	4,2	83,0	0,1	46,0	0,1	15,3
Севе	ерное полушарие	960	6,4	2,7	90,9	_	59,2	_	20,7
Южі	ное полушарие	693	21,8	6,2	72,0	0,1	27,7	0,1	7,8
Атла	антика, 15-70N	135	5,9	0,7	93,3	-	57,0	_	30,4
Тихи	ий океан, 20-65N	154	1,3	1,3	97,4	_	74,7	_	29,2
0)	65-90N	106	21,7	6,6	71,7	_	26,4	_	7
Широтные пояса	25-65N	540	3,7	1,7	94,6	_	57,4	_	19.8
иротн пояса	25S-25N	636	12,9	4,6	82,5	-	55,7	_	19.0
<u>Пиј</u> п	65-25S	358	23,5	6,7	69,8	0,3	18,7	0,3	4.7
I	90-65S	13	23,1	-	76,9	-	8	_	8
		T3	3288 (IG	СЕ, тол	ько суп	па)			
Земн	ной шар	2547	11,0	1,6	87,4	0,6	48,8	0,1	17,6
Севе	ерное полушарие	2147	8,3	1,4	90,3	0,4	51,3	0,0	17,7
Южі	ное полушарие	400	25,0	3,0	72,0	1,8	35,5	0,3	17,3
Севе	ерная Америка	442	5,4	1,1	93,4	0,7	33,7	_	9,7
Евра	яие	1484	9,8	1,4	88,8	0,4	54,9	0,1	18,1
Южі	ная Америка	135	25,2	3,0	71,9	3,0	40,0	_	20,7
Афр	ика	134	3,0	-	97,0	_	64,2	_	25,4
Авст	гралия	148	26,4	2,0	71,6	1,4	35,1	-	16,9
Анта	арктида	18	50,0	-	50,0	-	5,6	-	5,6
Евро	Европа		19,5	0,5	80,0	0,7	54,5	0,2	19,3
Азия	Азия		4,0	1,9	94,1	0,2	55,4	-	17,5
Аркт (суп	тика, 65-90N 1a)	151	29,1	1,3	69,5	0,7	27,8	-	7,3

Примечание. Объем выборок NN не включает станций/боксов, в которых в массивах HadCRUT5 и T3288 отсутствуют данные за текущий месяц/сезон. Значения процентилей (P_{05} , P_{95}) рассчитаны для каждого календарного месяца и станции по данным за 1911-2023 гг.

Осенью 2023 г. на территории Земного шара положительные аномалии преобладали на территории всех континентов и широтных поясов, кроме Антарктиды, где из 18 антарктических станций положительные осенние аномалии отмечены на 9. В целом, сезонные положительные аномалии отмечены на 87% всех наземных станций и в почти 83% боксов (рис. 2.1, табл. 2.3). При этом аномалии выше 95-го процентиля (5%-е экстремумы тепла) отмечены на 49% станций / 46% боксов, во все месяцы и на территории всех континентов и широтных зон (кроме Антарктиды и широтного пояса 90-65S в октябре и ноябре), притом что их пространственное распределение менялось от месяца к месяцу (рис.

2.2, табл. 2.4). Из месяцев особо выделяется сентябрь, когда экстремумы тепла наблюдались на ~46% станций/36% боксов.

Области отрицательных аномалий осенью были небольшие по протяженности и интенсивности, это: Восточная Антарктида (октябрь-ноябрь); Скандинавия и область Атлантического океана севернее Исландии (октябрь, ноябрь); юг Южной Америки и Антарктический полуостров (все три месяца сезона); Папуа-Новая Гвинея, север Австралии и прилегающие акватории Индийского и Тихого океанов (все три месяца сезона).

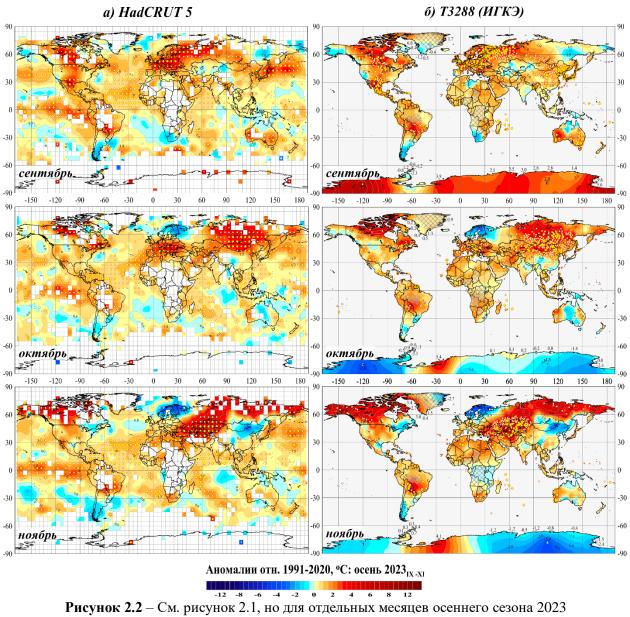
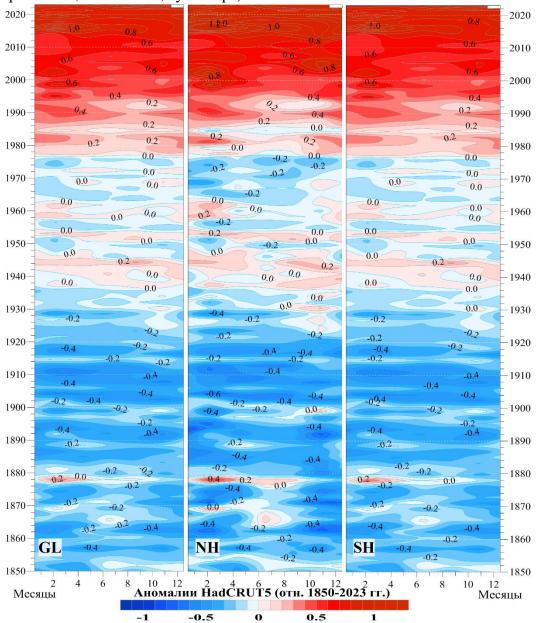

Следует еще раз отметить, что в текущем осеннем сезоне все три месяца в среднем по Земному шару, по Северному и Южному полушариям были рекордно теплыми.

Таблица 2.4 - Доля локальных 5%-х экстремумов холода ($X \le P_{05}$) и тепла ($X \ge P_{95}$) в крупных регионах Земного шара в отдельные месяцы осеннего сезона 2023 г.

	1 2											
	Dawway	NN - Число	Сент	ябрь	Окт	ябрь	Ноябрь					
	Регион	блоков/ станций	X≤P ₀₅	X≥P ₉₅	X≤P ₀₅	X≥P ₉₅	X≤P ₀₅	X≥P ₉₅				
	HadCRUT5 (Hadley/CRU, суша+море)											
Земно	ой шар	1653	0,4	36,2	0,1	32,2	0,5	32,7				
Север	оное полушарие	960	0,2	44,7	0,1	41,4	0,4	40,4				
Южн	ое полушарие	693	0,7	24,4	0,1	19,5	0,6	22,1				
Атлан	нтика, 15-70N	135	-	60,0	-	45,9	-	40,7				
Тихиї	й океан, 20-65N	154	_	57,1	_	44,2	-	51,3				
o	65-90N	106	2	21,7	_	9,4	3,8	19.8				
Широтные пояса	25-65N	540	_	44,1	_	39,8	_	31.9				
иротн пояса	25S-25N	636	0,3	41,8	0,3	42,8	0,2	47.3				
 Пиј п	65-25S	358	1	19,0	_	9,5	0,6	12.8				
	90-65S	13	_	23,1	_	8	7,7	8				
		T3288 (1	GCE, TO	лько су	ша)							
Земно	ой шар	2547	0,2	45,8	0,5	35,1	0,9	21,0				
Север	оное полушарие	2147	0,0	46,2	0,3	37,3	0,6	20,6				
······	ое полушарие	400	1,0	44,0	1,5	23,0	2,8	22,8				
Север	ная Америка	442	0,2	38,2	0,7	21,7	0,7	12,4				
Евраз	кия	1484	-	47,6	0,2	41,0	0,6	19,7				
Южн	ая Америка	135	1,5	34,8	_	27,4	3,0	26,7				
Афри	ка	134	-	41,8	-	46,3	-	44,0				
Австр	Австралия		0,7	63,5	3,4	16,9	2,7	16,9				
Антар	Антарктида		-	16,7	-	5,6	5,6	5,6				
Евроі	Европа		-	71,4	0,4	27,7	1,5	13,8				
Азия		944	-	33,8	0,1	48,4	0,1	23,5				
Аркті	ика, 65-90N (суша)	151	-	40,4	0,7	11,9	0,7	18,5				


Примечание. См. примечание к табл. 2.3.

Локализация наиболее крупных аномалий, положительных и отрицательных, от месяца к месяцу менялась, в основном – на континентах (особенно заметно – в Евразии, в Северной Америке, в Антарктиде). При этом их интенсивность и площадь охвата изменялись очень существенно. На акваториях океанов локализация аномалий менялась незначительно (Рис. 2.2).

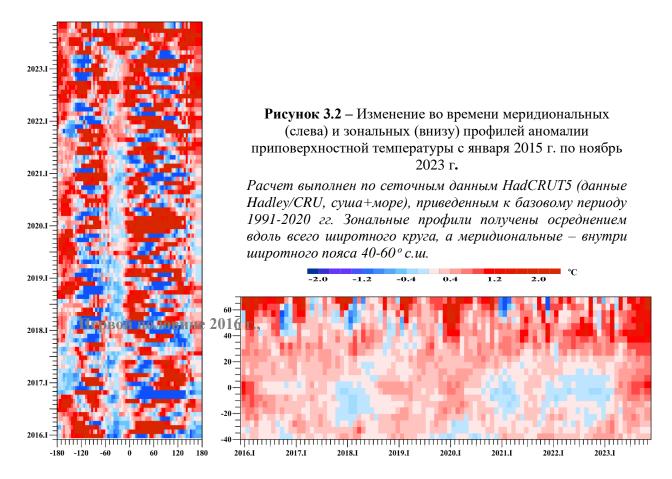
3. КРУПНОМАСШТАБНЫЕ ОСОБЕННОСТИ ИЗМЕНЕНИЯ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ ЗЕМНОГО ШАРА ЗА ПЕРИОД ИНСТРУМЕНТАЛЬНЫХ НАБЛЮДЕНИЙ, 1850-2023 гг. (осенний сезон)

Межгодовые и межмесячные изменения глобальной температуры. На рис. 3.1 представлены межгодовые (по вертикали) и межмесячные (по горизонтали) изменения глобально осредненных аномалий приповерхностной температуры (для Земного шара и полушарий) на протяжении всего периода инструментальных наблюдений (с января 1850 по ноябрь 2023 г., HadCRUT5, суша+мре).

Рисунок 3.1 – Двумерные изоплеты (год-месяц) аномалий глобальной приповерхностной температуры для Земного шара (GL), Северного (NH) и Южного (SH) полушарий Использованы данные HadCRUT5 (суша+море, Hadley/CRU, UK), январь 1850 – ноябрь 2023. Аномалии приведены к базовому периоду 1850-2023 гг.

Можно видеть, что современное глобальное потепление стало особенно активным с середины 1990-х и наиболее ярко проявляется в Северном полушарии, особенно после 2010 года. В 2015-2023 гг. аномалии колеблются в интервале 1,0-1,6 °C в Северном полушарии и

0,6 -1,2 °C в Южном (еще раз заметим, что на рис. 3.1 аномалии приведены относительно базового периода 1850-2023 гг.).


Широтно-долготные разрезы. На рисунке 3.2 представлены зональные и меридиональные особенности изменения температурного режима последних лет (2015-2023 гг.), от месяца к месяцу.

Меридиональный профиль позволяет проследить изменение режима температуры океанов и континентов в умеренных широтах Северного полушария (40-60°с.ш.), от 180° з.д. до 180° в.д., то есть от восточного сектора Тихого океана, затем – территория США, и далее – Северная Атлантика, Евразия и западный сектор Тихого океана.

Представленный период отличается холодными аномалиями в Атлантике вплоть до июля 2021 и теплыми — в Тихом океане (за исключением 2016_{VI} - 2017_{VIII} и 2021_{IX-XII} , когда в восточном секторе Тихого океана преобладали отрицательные аномалии).

В текущем сезоне, в умеренных широтах Северного полушария (рис. 3.2, слева), в сентябре и октябре положительные аномалии просматриваются вдоль всего широтного круга. В ноябре на фоне положительных аномалий просматриваются в секторах 15-90 W (восток Северной Америки и запад Атлантики) и 90-120 E (восток Азии) сложились условия «ниже нормы»

Зональные профили (рис. 3.26) четко указывают на повышение температуры в первой половине 2016 г., зимой 2017, ее заметное понижение в первой половине 2018 г. (не получивший развития Ла-Нинья); потепление в умеренных широтах с середины 2019 г. (исключая все месяцы зимы 2020/21 и декабрь 2021), некоторое понижение температуры в тропическом поясе с конца 2020 г. по февраль 2023 г. (Ла-Нинья) и повышение температуры во всех широтах с марта 2023 г. до настоящего времени (развитие Эль-Ниньо).

Временные ряды глобально осредненной температуры. Интегральную характеристику и оценку интенсивности наблюдаемых изменений приземной температуры Земного шара дают глобально осредненные временные ряды для территории Земного шара и полушарий (рис. 3.3). В таблице 3.1 для всех рядов (по всем четырем наборам данных, для Земного шара и обоих полушарий) приведены МНК-оценки линейного тренда за 1976-2023 гг. (период современного глобального потепления) и 1924-2023 гг. (последнее 100-летие).

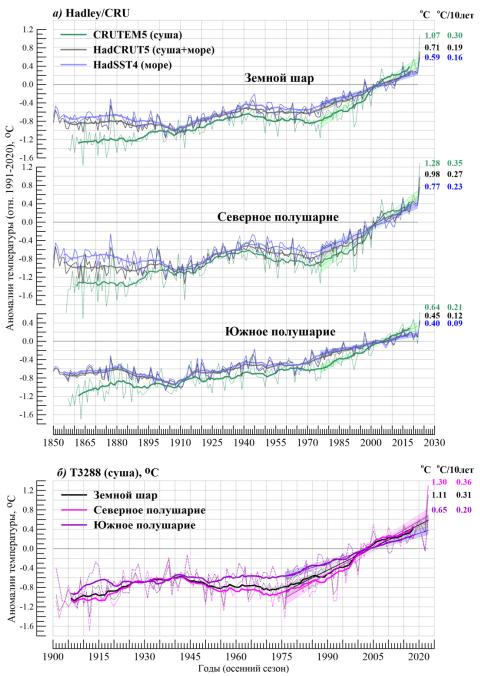


Рисунок 3.3 — Временные ряды сезонных аномалий приземной температуры (осень), осредненных по территории Земного шара, Северного и Южного полушарий: а) по данным Hadley/CRU, 1850-2023 гг.: HadCRUT5 (суша+море), CRUTEM5 (суша), HadSST4 (море); б) по данным ИГКЭ, 1901-2023 гг.: Т3288 (суша).

Для всех рядов показан ход 11-летних скользящих средних и линейный тренд за 1976-2023 гг. с 95% доверительным интервалом. Справа приведены числовые значения сезонных аномалий в 2023 г. и коэффициентов линейного тренда за 1976-2023 гг. (°C/10лет, осень).

Таблица 3.1 — Коэффициенты линейного тренда (${}^{\circ}C/10$ лет) глобальных временных рядов приземной температуры за 1976-2023 гг. и 1923-2023 гг. (в среднем за осенний сезон и по месяцам)

Darway		1976	-2023			192	3-2023					
Регион	Осень	Сентябрь	Октябрь	Ноябрь	Осень	Сентябрь	Октябрь	Ноябрь				
HadCRUT5 (Hadley/CRU, суша+море)												
Земной шар	0,194	0,193	0,201	0,186	0,099	0,098	0,096	0,102				
Северное полушарие	0,271	0,269	0,280	0,265	0,105	0,104	0,100	0,111				
Южное полушарие	0,116	0,117	0,123	0,108	0,092	0,093	0,091	0,093				
Т3288 (ИГКЭ, суша)												
Земной шар	0,312	0,302	0,329	0,306	0,114	0,110	0,111	0,122				
Северное полушарие	0,361	0,331	0,382	0,368	0,119	0,110	0,112	0,133				
Южное полушарие	0,201	0,233	0,207	0,164	0,104	0,112	0,110	0,090				
		CRUTE	M5 (Hadle	y/CRU, cy	/ша)							
Земной шар	0,303	0,296	0,318	0,294	0,120	0,116	0,117	0,127				
Северное полушарие	0,350	0,325	0,368	0,356	0,122	0,112	0,117	0,138				
Южное полушарие	0,208	0,238	0,217	0,170	0,116	0,124	0,119	0,106				
]	HadSST4 (1	Hadley/CR	RU, тольк	о море)							
Земной шар	0,159	0,166	0,162	0,150	0,089	0,091	0,087	0,089				
Северное полушарие	0,226	0,244	0,226	0,207	0,096	0,101	0,094	0,091				
Южное полушарие	0,095	0,088	0,099	0,097	0,086	0,085	0,084	0,090				

Примечание. Все оценки в таблице статистически значимы на 1%-м уровне

Показатели k_1 - k_3 (табл. 3.2), рассчитанные как отношение соответствующих коэффициентов тренда, количественно уточняют выводы, основанные на визуальном сопоставлении глобальных временных рядов (рис. 3.3) и оценках трендов (табл. 3.1) в разных группах данных.

Таблица 3.2 — Сравнение скорости глобального потепления осенних сезонов у поверхности земли в разных группах данных

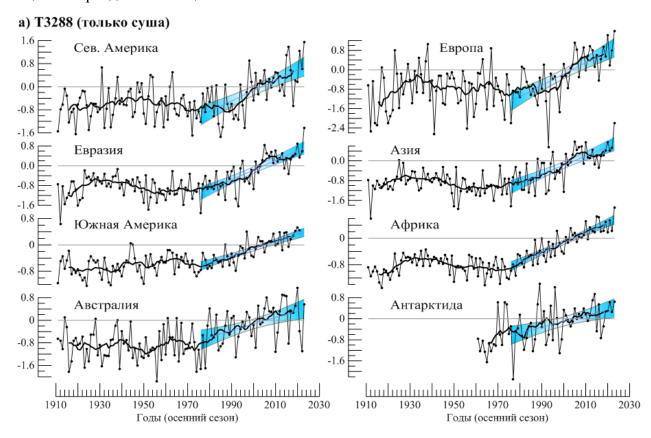
	Показатель		1976-2023		1924-2023			
1,-		3Ш	СП	ЮП	ЗШ	СП	ЮП	
\mathbf{k}_1	b_{T3288}/b_{HadSST}	1,96	1,60	2,12	1,28	1,24	1,21	
	b_{CRUTEM}/b_{HadSST}	1,91	1,55	2,19	1,35	1,27	1,35	
	b _{CП} / b юп		1976-2023		1924-2023			
\mathbf{k}_2		T3288	CRUTEM	HadSST	T3288	CRUTEM	HadSST	
		1,80	1,68	2,38	1,14	1,05	1,12	
			СП		ЮП			
k_3	$b_{1976-2023}$ / $b_{1923-2023}$	T3288	CRUTEM	HadSST	T3288	CRUTEM	HadSST	
		3,03	2,87	2,35	1,93	1,79	1,10	

Из этих оценок видно, что на 100-летнем интервале средняя скорость потепления осенних сезонов в обоих полушариях очень близка ($k_2 \sim 1,0$ -1,1) и над сушей несколько выше, чем над океанами ($k_1 = 1,2$ -1,3). При этом в Южном полушарии, на поверхности океанов существенного ускорения потепления в последние 50 лет практически не произошло (k_3 =1,05), а на суше ускорилось почти вдвое (k_3 =1,8-1,9). Соответственно, в Северном полушарии ускорение потепления в последние 50 лет составило на континентах k_3 =2,9-3,0, а на океанах k_3 =2,4.

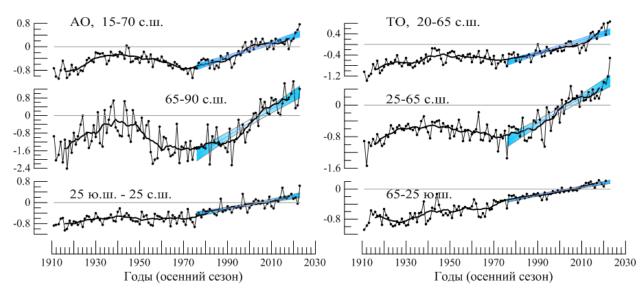
4. ВРЕМЕННЫЕ РЯДЫ РЕГИОНАЛЬНО ОСРЕДНЕННЫХ АНОМАЛИЙ ПРИЗЕМНОЙ ТЕМПЕРАТУРЫ, 1911-2023 гг. (осенний сезон)

Представленные ниже временные ряды (рис. 4.1-4.3) рассчитаны по методике ИГКЭ, по сеточным данным HadCRUT5 (для основных широтных поясов, северных частей Атлантического и Тихого океанов) и по данным станционных наблюдений Т3288 (для шести континентов и раздельно для Европы и Азии). Данные до 1911 г. не приводятся, т.к. представляются недостаточно полными (особенно над океанами). На всех временных рядах показаны тренды за период 1976-2023 гг., условно принятый за период современного глобального потепления (числовые оценки трендов для всех регионов приведены в таблице 4.1).

Таблица 4.1. – Коэффициенты линейного тренда (°*C*/10 лет) регионально осредненных аномалий приземной температуры осеннего сезона за 1976-2023 гг. (в целом за сезон и по месяцам)


Регион	Осень	Сентябрь	Октябрь	Ноябрь
НадС	RUT5 (Hadley/C	RU, суша+мор	e)	
Атлантика (15-70N)	0,238	0,247	0,252	0,214
Тихий океан (20-65N)	0,248	0,265	0,248	0,233
Арктический пояс (65-90N)	0,611	0,422	0,715	0,724
Умеренный пояс СП (25-65N)	0,325	0,339	0,336	0,301
Тропики (25S-25N)	0,153	0,156	0,154	0,150
Умеренный пояс ЮП (65-25S)	0,113	0,104	0,116	0,110
Антарктический пояс (90-65S)	0,297	*0,353	0,167	
	Т3288 (ИГК)	Э, суша)		
Северная Америка	0,360	0,377	0,344	0,361
Евразия	0,391	0,351	0,440	0,384
Южная Америка	0,233	0,305	0,203	0,197
Африка	0,299	0,258	0,304	0,327
Австралия	0,232	0,298	0,278	**0,132
Антарктида	0,219	**0,294	*0,218	**0,133
Европа	0,468	0,450	0,465	0,486
Азия	0,368	0,322	0,429	0,357

Примечание. Приведенные в таблице оценки трендов, не отмеченные звездочкой (*), статистически значимы на 1%-уровне. Одной звездочкой выделены оценки, статистически значимые на 5%-уровне, двумя — с критическим уровнем значимости более 5% (не значимы на 5%-м уровне).


Как следует из таблицы, для осеннего сезона региональные оценки трендов (сезонных и месячных) все положительны и почти все статистически значимы на 1%-уровне (в Антарктиде, в сентябре – на 5%-уровне). Статистически не значимы уже на 5%-уровне тренды в Антарктиде (в сентябре и ноябре), Австралии (в ноябре) и Антарктическом поясе 90-65S (в сентябре).

Регионы наиболее интенсивного потепления — Арктический пояс и Европа (коэффициенты трендов, соответственно, 0.61 и 0.47°C/10 лет).

Более детально проследить особенности многолетнего хода приземной температуры в каждом регионе можно по временным рядам на рисунках 4.1-4.3 и по соответствующим оценкам трендов в таблице 4.1.

б) HadCRUT5 (суша+море)

Рисунок 4.1 – Временные ряды пространственно-осредненных аномалий приземной температуры осеннего сезона в крупных регионах мира: а) континенты; б) северные части Атлантического и Тихого океанов и основные широтные пояса

Расчеты выполнены по методике ИГКЭ по данным: а) ИГКЭ (массив T3288), (б) Hadley/CRU (массив HadCRUT5). Аномалии приведены в отклонениях от средних за 1991–2020 гг. Сглаженные кривые (жирные линии) получены 11-летним скользящим осреднением. Показан линейный тренд за 1976-2023 гг. с 95%-м доверительным интервалом (голубая заливка).

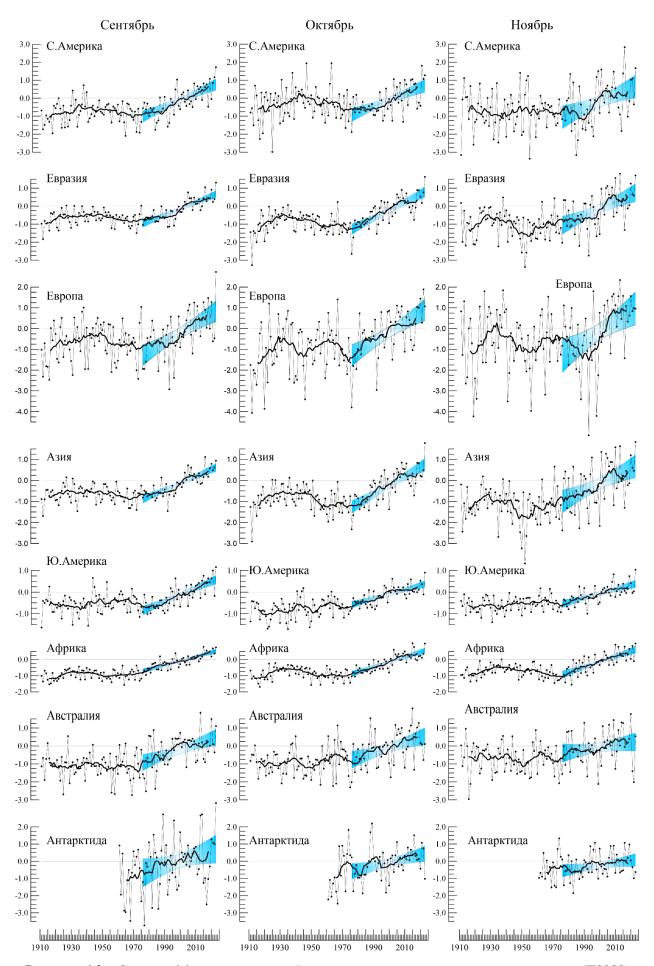
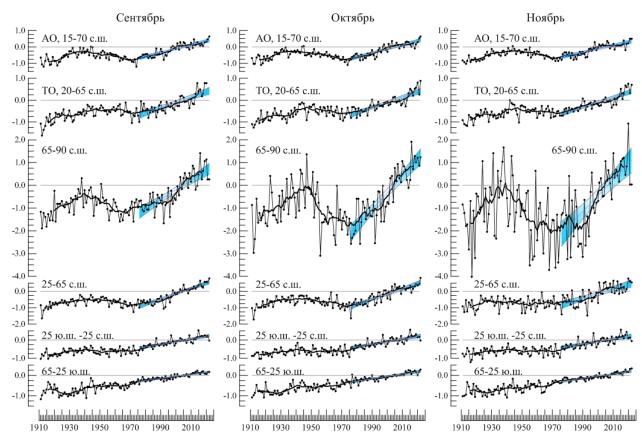



Рисунок 4.2 – См. рис. 4.1, но для аномалий осенних месяцев и только для континентов (Т3288)

Рисунок 4.3 – См. Рис. 4.1., но для аномалий осенних месяцев и только для океанов и широтных поясов земного шара (HadCRUT5)

5. ГЕОГРАФИЧЕСКИЕ ОСОБЕННОСТИ СОВРЕМЕННЫХ ИЗМЕНЕНИЙ КЛИМАТА, 1976-2023 гг. (осенний сезон)

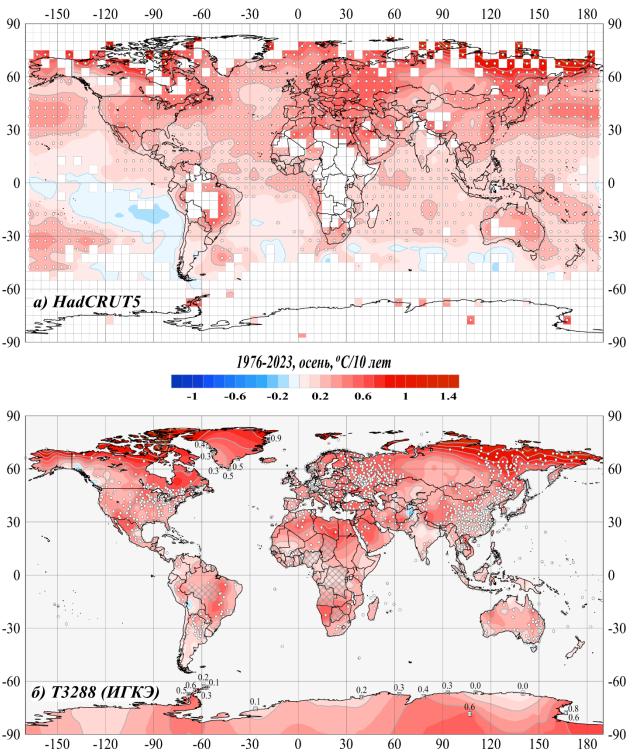
Ниже приведено географическое распределение коэффициентов линейного тренда приповерхностной температуры за 1976-2023 гг. для осеннего сезона (рис. 5.1) и отдельно для каждого из осенних месяцев (рис. 5.2). Использованы данные наблюдений на 2601 станциях (массив Т3288) и в центрах 1620 боксов (массив HadCRUT5), для которых своевременно поступили данные хотя бы за два осенних месяца 2023 года. В таблице 5.1 приведено их количественное распределение в зависимости от географического региона, направленности тренда и уровня значимости. В ячейках таблицы для каждой анализируемой выборки указано реальное число попавших в нее доступных оценок и их доля в общем объеме соответствующей выборки.

Таблица 5.1 – Количественное распределение (%) локальных оценок тренда за 1976-2023 гг. (осенний сезон) в зависимости от региона, знака коэффициента тренда \boldsymbol{b} и уровня значимости $\boldsymbol{\alpha}$

				Выбор	ки по зна	іку коэфф	оициента	тренда	
Регион	I	NN	1.0	1. 0	h. 0	b	<0	b>0	
			b<0	b=0	b>0	α<=5%	α>=10%	α<=5%	α>=10%
			Hade	CRUT5 (суша+мо	pe)			
Земной	шар	1601	6,7	0,9	92,4	0,2	6,1	74,5	14,0
Северно	ое полушарие	948	0,7	0,2	99,1	-	0,7	86,6	8,8
Южное	полушарие	653	15,3	1,8	82,8	0,6	13,8	57,0	21,6
AO, 15-	70N	135	-	-	100,0	-	-	97,0	1,5
TO, 20-	65N	153	-	-	100,0	_	-	100,0	-
0)	90-65N	95	-	-	100,0	-	-	94,7	3.2
ные	65-25N	540	-	-	100,0	-	-	88,1	6.7
Широтные пояса	25S-25N	634	9,0	1,1	89,9	0,3	7,9	72,9	14.7
ПП	25-65S	319	15,7	2,2	82,1	0,6	14,7	49,2	27.3
	65-90S	13	-	-	100,0	_	-	61,5	38.5
			Т3	288 (толі	ько суша	1)			
Земной	шар	2537	2,5	0,3	97,2	0,4	2,0	78,0	13,8
Северно	ое полушарие	2143	1,6	0,2	98,2	0,3	1,2	80,9	11,9
Южное	полушарие	394	7,4	1,0	91,6	1,0	6,1	62,4	23,9
С. Амер	рика	442	2,0	-	98,0	0,5	1,6	71,5	19,0
Евразия	I	1483	1,1	0,1	98,7	0,2	0,9	83,4	10,2
Ю. Аме	рика	134	9,0	2,2	88,8	2,2	6,7	55,2	25,4
Африка	L	133	3,8	-	96,2	0,8	2,3	81,2	9,8
Австрал	киг	145	7,6	0,7	91,7	1,4	6,2	61,4	26,2
Антарктида		18	-	-	100,0	_	-	44,4	44,4
Европа		549	-	-	100,0	-	-	96,7	1,3
Азия		943	1,8	0,2	98,0	0,3	1,5	75,6	15,4
Арктика	а, 65-90N, суша	151	-	-	100,0	_	-	95,4	2,6

Примечание. Таблица обобщает распределение оценок на рисунке $5.1.\ NN-$ общее количество учтенных станций/боксов в регионе

Тенденция *к потеплению осенних сезонов* у поверхности земли наблюдается почти повсеместно – положительные тренды составляют более 97% всех станционных оценок (по данным массива Т3288), из которых 78% статистически значимы на 5%-м уровне (по сеточным данным HadCRUT5 более 92% и 74,5%, соответственно).


В частности, все тренды положительны в широтных поясах 90-55N, 65-90S, в северных частях Тихого и Атлантического океанов, в Европе и Антарктиде, но доля статистически значимых из них в Южном полушарии существенно меньше, чем в Северном (в целом по полушариям: 57% против 86,6%). Отметим дополнительно, что именно в Северном полушарии расположены регионы, в которых более 95% локальных оценок статистически значимы на 5%-уровне, в том числе: оба северных океана (Тихий океан и Атлантика), Европа и Арктический широтный пояс в целом (90-65N), с учетом континентов и океанов (табл. 5.1).

Область наиболее активного осеннего потепления (рис. 5.1, 5.2) — по-прежнему, Арктика (острова и побережье Карского моря), до 2,3-2,5 °C/10 лет. В сентябре за ней следуют: центр Южной Америки — до 1.0°C/10 лет; Европа, области на западе США— до 0.8°C/10 лет; север Африки — до 0.7°C/10 лет.

Таблица 5.2 –Доля статистически значимых оценок тренда ($\alpha \le 5\%$) каждого знака в отдельные месяцы сезона, 1976-2023 гг. (% от NN)

		\mathbf{F} ($\alpha \leq 5\%$), %							
Регион	NN	Cei	нтябрь	Окт	ябрь	Hos	нбрь		
		b <0	b>0	b <0	b>0	b <0	b>0		
	Ha	dCRUT	5 (Hadley/C	CRU, сушан	-море)				
Земной шар	1601	0,5	65,3	0,2	67,4	0,2	58,4		
Северное полушарие	948	-	80,6	-	79,4	-	68,7		
Южное полушарие	653	1,2	43,2	0,6	49,9	0,6	43,5		
Атлантика (15-70N)	135	-	91,9	-	96,3	-	89,6		
Тихий океан (20-65N)	153	-	96,7	-	96,1	-	88,2		
65-90N	95	-	89,5	-	93,7	-	78,9		
25-65N	540	_	84,3	_	80,9	_	63,7		
25S-25N	634	0,6	62,6	0,3	65,0	0,3	62,1		
65-25S	319	1,3	33,2	0,6	42,3	0,6	37,0		
90-65S	13	-	23,1	-	46,2	•	30,8		
		T	3288 (ИГК	Э, суша)					
Земной шар	2537	0,2	71,4	0,4	61,6	0,3	46,6		
Северное полушарие	2143	0,2	74,6	0,3	64,6	0,3	47,9		
Южное полушарие	394	0,3	54,3	0,8	45,4	0,5	39,3		
Северная Америка	442	0,2	72,4	0,5	59,7	0,2	28,1		
Евразия	1483	-	75,4	0,1	64,9	0,2	50,7		
Южная Америка	134	0,7	52,2	3,0	26,9	0,7	49,3		
Африка	133	1,5	62,4	1,5	69,2	0,8	57,9		
Австралия	145	0,7	60,0	-	48,3	1,4	24,1		
Антарктида	18	-	11,1	-	27,8	-	22,2		
Европа	549	-	88,5	-	69,4	-	58,3		
Азия	943	-	67,7	0,2	62,6	0,3	45,9		
Арктика, 65-90N, суша	151	-	82,8	-	90,7	-	66,9		

Примечание. Таблица обобщает распределение оценок на рисунке 5.2. Процентное содержание F ($\alpha \le 5\%$) рассчитано относительно NN (NN - общее количество станций в регионе).

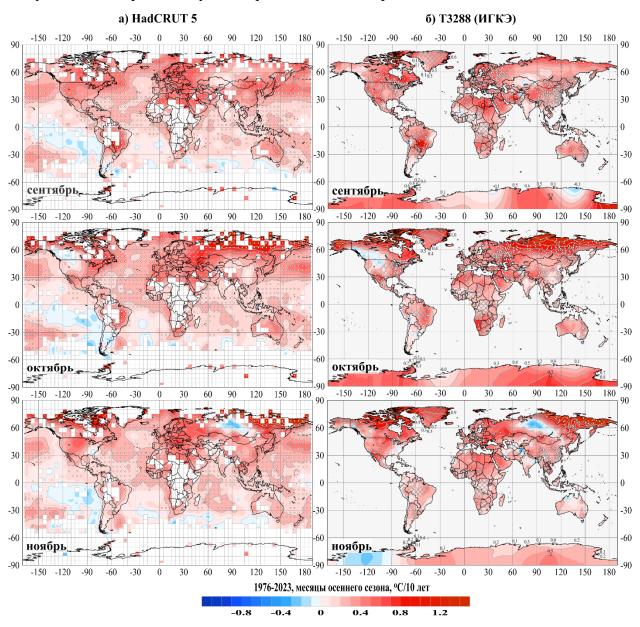


Рисунок 5.1 - Пространственное распределение коэффициентов линейного тренда температуры осеннего сезона у поверхности Земного шара за период 1976-2023 гг. (°C/10 лет).

Использованы данные: а) HadCRUT5 - сеточные данные Hadley/CRU, UK (суша+море); б) T3288 — станционные данные ИГКЭ (только суша). Пустыми боксами (а) и штриховкой (б) показаны области отсутствия наблюдений. Для станций Антарктиды и Гренландии приведены числовые значения коэффициентов тренда. Белыми кружками выделены боксы/станции, для которых тренд статистически значим на 1%-м уровне

Из 2,5% отрицательных станционных оценок тренда (64 станции из 2537 с тенденцией к похолоданию осенних сезонов) статистически значимы на 5%-м уровне только 0,4% (11 станций). Эти области расположены в Боливии (до -0,2°С/10 лет) и в Бангладеш (до -0,1°С/10 лет). На остальной территории, во все месяцы сезона (рис. 5.2),

отрицательный тренд либо отсутствует, либо статистически незначим даже на 10%-м уровне (это области отрицательного тренда в Евразии и Антарктиде (сентябрь, ноябрь), Аргентине и Канаде (октябрь), Австралии (ноябрь). На карте сезонных трендов (рис. 5.1) им соответствуют области статистически незначимого, слабого положительного тренда, что указывает скорее на отсутствие реальных однонаправленных тенденций любого знака.

Рисунок 5.2 –См. рис. 5.1, но для коэффициентов тренда среднемесячных аномалий температуры осенних месяцев.

6. ЗАКЛЮЧЕНИЕ

- 1. Осень 2023 г. самый теплый осенний сезон в истории наблюдений по всем наборам данных (суша, море, суша+море). В среднем по Земному шару, Северному и Южному полушариям, сезон в целом и все три месяца были рекордно теплыми. Предыдущие осенние максимумы были зафиксированы: на суше в 2020 г., на акваториях океанов и суммарно (суша+море) в 2015 г.
- 2. Температурные рекорды регионального масштаба (региональные максимумы) обновлены, в среднем за сезон, во всех рассмотренных регионах, кроме обоих полярных широтных поясов и двух южных континентов Австралия и Антарктида. Месячные рекорды каждого из трех осенних месяцев обновлены в регионах: Южная Америка, северная часть Атлантики и широтные пояса 25-65N, 25S-25N.
- 3. Осенью 2023 г. положительные сезонные аномалии преобладали на территории всех континентов (кроме Антарктиды) и широтных поясов в целом, на них прихдится 87% всех наземных станций и в центрах почти 83% боксов. При этом 5%-е экстремумы тепла отмечены на 49% станций/46% боксов, во все месяцы и на территории всех континентов и широтных зон (кроме Антарктического пояса). Их пространственное распределение от месяца к месяцу менялось. Из месяцев особо выделяется сентябрь.

Отрицательные аномалии зафиксированы лишь в октябре-ноябре, в среднем по широтному поясу 90-65S и в Антарктиде.

4. На большей части Земного шара продолжается потепление осенних сезонов: положительные тренды, в целом по Земному шару, составляют более 97% всех станционных оценок (более 92% оценок в боксах), из которых 78% (75%) статистически значимы на 5%-уровне. В частности, все тренды положительны в широтных поясах 90-55N, 65-90S, в северных частях Тихого и Атлантического океанов, в Европе и Антарктиде, но доля статистически значимых из них в Южном полушарии существенно меньше, чем в Северном (в целом по полушариям: 57% против 86,6%).

Область наиболее интенсивного потепления — Арктика (до +1.9°C/10 лет — за сезон в целом, в отдельные месяцы — до 2.5°C/10 лет) и Европа (до +0.8°C/10 лет).

- 5. Среди отрицательных коэффициентов тренда (2,5% станций/6.7% боксов) статистически значимы на 5%-уровне оценки на 0,4% станций/0,2% боксов. Эти области расположены в Боливии (до -0,2°С/10 лет) и в Бангладеш (до -0,1°С/10 лет). На остальной территории, во все месяцы сезона, выделяются области еще более слабого отрицательного тренда, статистически не значимого даже на 10%- уровне (в основном, на суше: в Евразии, Канаде, Австралии, Аргентине, Антарктиде). На сезонной карте им соответствуют области слабого, также статистически незначимого положительного тренда, что указывает скорее на отсутствие в этих областях реальных однонаправленных тенденций любого знака.
- 6. На 100-летнем интервале (1924-2023) средняя скорость осеннего глобального потепления в обоих полушариях примерно одинакова ($k_2 \sim 1,0$ -1,1), но в каждом из них над сушей несколько выше ($k_1 = 1,2$ -1,3), чем над океанами. При этом в Южном полушарии, в океанах существенного ускорения потепления в последние 50 лет практически не произошло (k_3 =1,10), а на суше ускорилось почти вдвое (k_3 =1,8-1,9). Соответственно, в Северном полушарии коэффициент ускорения в последние 50 лет составил на континентах k_3 =2,9-3,0, а на океанах k_3 =2,4.